Tag Archives: oncology

Modulight Spotlights: LASER-SHARP RESEARCH – February 2024

 Modulight Spotlights: LASER-SHARP RESEARCH – February 2024 Photoactivated chemotherapy (PACT) is a novel anticancer therapy where cytotoxic drug is attached into a photocage, which is cleaved by light to release the drug at the tumor site. A new study led by Prof. Sylvestre Bonnet’s group at Leiden University, demonstrated a significantly improved agent for photoactivated chemotherapy. ML6600 laser was used to study the drug release from the photocage, comparing efficacy between red and green light. It was shown that the agent could be effectively released Continue reading →

Red-Light Activation of a Microtubule Polymerization Inhibitor via Amide Functionalization of the Ruthenium Photocage

Published in: Angew Chem Int Ed Authors: Ludovic Bretin, Yurii Husiev, Vadde Ramu, Liyan Zhang, Matthijs Hakkennes, Selda Abyar, Andrew C. Johns, Sylvia E. Le Dévédec, Tania Betancourt, Alexander Kornienko, Sylvestre Bonnet Leiden University A ruthenium-based compound was developed for PACT (photoactivated chemotherapy), which unlike most existing PACT compounds, can be also activated with clinically relevant longer (red) wavelength of light. ML6600 was used for in vivo experiments to superficially activate PACT compound in subcutaneous tumor comparing green and red wavelengths. The tumor volume reduction was Continue reading →

Transient fluid flow improves photoimmunoconjugate delivery and photoimmunotherapy efficacy

Published in: iScience Authors: Aaron J. Sorrin, Keri Zhou, Katherine May, Cindy Liu, Kathryn McNaughton, Idrisa Rahman, Barry J. Liang, Imran Rizvi, Dana M. Roque, Huang-Chiao Huang    Published in: iScience Authors: Aaron J. Sorrin, Keri Zhou, Katherine May, Cindy Liu, Kathryn McNaughton, Idrisa Rahman, Barry J. Liang, Imran Rizvi, Dana M. Roque, Huang-Chiao Huang   The study showed that fluid flow induced shear stress increased the photocytotoxicity of different photosensitizers tested (BPD, PIC, PIC-coated liposome) against ovarian cancer cells. The cellular delivery of photosensitizers doubled compared to static conditions. Modulight laser was used for PDT activation together with photosensitizer(s). Circulating drugs in the peritoneal cavity is an effective strategy for advanced ovarian Continue reading →

Immune checkpoint inhibition combined with targeted therapy using a novel virus‑like drug conjugate induces complete responses in a murine model of local and distant tumors

Published in: Cancer Immunology, Immunotherapy Authors: Ruben V. Huis in ‘t Veld, Sen Ma, Rhonda C. Kines, Anneli Savinainen, Cadmus Rich, Ferry Ossendorp, Martine J. Jager    Published in: Cancer Immunology, Immunotherapy Authors: Ruben V. Huis in ‘t Veld, Sen Ma, Rhonda C. Kines, Anneli Savinainen, Cadmus Rich, Ferry Ossendorp, Martine J. Jager   AU-011 combination with immune checkpoint inhibitors (ICI) was studied in murine models. This has potential to improve treatment efficacy against metastatic tumors by abscopal immune effects. ICI was shown to increase AU-011 efficacy and also result in abscopal effect and induced complete responses in 75% of animals. ML6700 was used as illumination source for PDT. Metastases remain the Continue reading →

Novel ophthalmic PDT laser platform to target oncology and various other retinal indications

Presented in: SPIE BIOS 2023 Authors: Laura Vesala, Eero Koivumäki, Jukka-Pekka Alanko, Timo Tanila, Ivan Baldin, Zoe Ylöniemi, Petteri Uusimaa, Modulight Corp.    Presented in: SPIE BIOS 2023 Authors: Laura Vesala, Eero Koivumäki, Jukka-Pekka Alanko, Timo Tanila, Ivan Baldin, Zoe Ylöniemi, Petteri Uusimaa, Modulight Corp.   Laser systems, in ophthalmic applications, are utilized in the treatment of various ophthalmic diseases such as in ocular oncology and age-related macular degeneration through photochemical mechanism of photodynamic therapy. In addition, these lasers can be used to activate drug delivery systems in the retina to provide targeted drug therapy. PDT is a form of a combination treatment which utilizes light energy to Continue reading →

Optimization of light delivery for non-muscle invasive bladder cancer PDT

Presented in: SPIE BIOS 2023 Authors: Elias Kokko, Robert Perttilä, Zoe Ylöniemi, Visa Kaivosoja, Jukka-Pekka Alanko, Petteri Uusimaa, Modulight Corp.    Presented in: SPIE BIOS 2023 Authors: Elias Kokko, Robert Perttilä, Zoe Ylöniemi, Visa Kaivosoja, Jukka-Pekka Alanko, Petteri Uusimaa, Modulight Corp.   Non-muscle invasive bladder cancer (NMIBC) is a form of cancer with a relatively high 5-year survival rate but also very high recurrence rate. Photodynamic diagnosis is commonly used in standard clinical practice to visualize bladder cancer lesions as part of a TURBT procedure but photodynamic treatments utilizing photosensitive drugs have had limited success in clinical setting partly because of limitations in light sources and Continue reading →

Modulight Spotlights: LASER-SHARP RESEARCH – December 2022

   Modulight Spotlights: LASER-SHARP RESEARCH – December 2022 This month’s research spotlight goes to H. Wakiyama, H. Kobayashi, et al. at National Cancer Institute, USA. Their study, published in Cancer Immunology Research journal, looked into immunological mechanisms behind hyperprogressive disease. Immune checkpoint inhibitors, despite being a major success story in the field of cancer therapy, unfortunately lead to this rapid progression of cancer in some patients, for yet poorly understood reasons. To study this, the research team partially depleted cytotoxic T cells by photoimmunotherapy, using CD8-targeted Continue reading →

Fluorescence imaging & endoscopy for tumor visualization and diagnostics

Several fluorescent agents have been approved for fluorescence based diagnosis & intraoperative imaging: Dye generic name Countries Excitation Detection Indications Indocyanine Green (ICG) Worldwide 800 nm Near-infrared (820 nm) Multiple uses: lymphatic mapping, tissue perfusion, visualization of biliary ducts and blood veins, retinal angiography Fluorescein Worldwide 490 nm Green fluorescence (525 nm) Fluorescein angiography or angioscopy (ophthalmology) Methylene Blue Worldwide 665 nm 688 nm Endoscopic polypectomy, chromoendoscopy, lymphatic drainage 5-ALA Hydrochloride (converted to Pp-IX) Worldwide 400 – 410 nm Red fluorescence (620 – 710 nm) Continue reading →Introduction to fluorescence imaging Fluorescence is a phenomenon where substance that has absorbed certain wavelength of light emits it back at another wavelength. These substances are called fluorophores or fluorescent dyes. The emitted light has a longer wavelength than the absorbed one since some energy of the photon is lost in the process. The difference in wavelengths between absorbed and emitted light, called Stokes shift, allows very low background for fluorescence detection by separating it from the excitation light. The process of fluorescence generation is Continue reading →

Light delivery optimization for H&N cancer treatment

Results Illumination with one fiber Some level of tissue heating was observed at all used light intensities. At lower intensities (60-100 mW/cm), less than 5% of the tumor was subjected to >60 ⁰C temperature, a point where irreversible thermal damage will immediately occur (photothermal ablation). At intensities of 150-200 mW/cm, 15-20% of the tumor was at >60 ⁰C temperature. At 400 mW/cm, which is FDA-recommended light irradiance for iPDT, a substantial portion of the tumor, up to 60%, was above 60 ⁰C.   Above figures Continue reading →Customer case Roswell Park Comprehensive Cancer Center was founded in 1898 as the first institute in the US devoted exclusively to cancer treatment and research. It is also the place where photodynamic therapy (PDT) was developed in the late 1970s by Thomas Dougherty. The PDT center at Roswell Park is a leader in the use of photodynamic therapy for treating different cancers. Research work includes treatment planning and light dosimetry for interstitial and intraoperative PDT to improve the quality of life and survival of cancer patients Continue reading →

Combining photoimmunotherapy with immune checkpoint inhibition

Motivation for the study The motivation was to study if photoimmunotherapy could enhance anti-tumor immunity when combined with immune checkpoint inhibition. CD44-targeted photoimmunotherapy was applied against poorly immunogenic, “cold” tumor and antitumor effect was studied alone and in combination with anti-PD-1 immune checkpoint inhibition. Sensitization of this “cold” tumor to immune checkpoint inhibition after photoimmunotherapy would mean that the tumor has been converted into highly immunogenic, “hot” tumor infiltrated with killer T cells mainly responsible for eradicating the tumor. The formation of immunological antitumor memory Continue reading →Customer case The Laboratory of Molecular Theranostics at National Cancer Institute (NCI) is a major research section of the Molecular Imaging Program at National Cancer Institute (NCI) and is led by Dr. Hisataka Kobayashi who is the father of photoimmunotherapy. The ground-breaking research includes the development of imaging and theranostic probes with a particular emphasis on optical probes, which can aid in cancer detection during cancer resection or endoscopy. Dr. Hisataka Kobayashi M.D., PhD Dr. Peter L. Choyke M.D., PhD   Modulight products: ML7710 (multiple channels Continue reading →