Tag Archives: breast cancer

A Non-Invasive Deep Photoablation Technique to Inhibit DCIS Progression and Induce Antitumor Immunity

Published in: Cancers Authors: Kensuke Kaneko, Hiroshi Nagata, Xiao-Yi Yang, Joshua Ginzel, Zachary Hartman, Jeffrey Everitt, Philip Hughes, Timothy Haystead, Michael Morse, Herbert Kim Lyerly, Takuya Osada    Published in: Cancers Authors: Kensuke Kaneko, Hiroshi Nagata, Xiao-Yi Yang, Joshua Ginzel, Zachary Hartman, Jeffrey Everitt, Philip Hughes, Timothy Haystead, Michael Morse, Herbert Kim Lyerly, Takuya Osada   The study investigated HSP90-targeted PDT for minimally invasive treatment of ductal carcinoma in situ (DCIS), benign breast cancer condition that has potential to progress into breast cancer. PDT with ML8500 combined to ML7710 resulted in effective in vitro cytotoxicity and with ML7710 in vivo, which was further potentiated with PD-L1 immune checkpoint inhibitors.   Read the article Continue reading →

Combination of a novel heat shock protein 90-targeted photodynamic therapy with PD-1/PD-L1 blockade induces potent systemic antitumor efficacy and abscopal effect against breast cancers

Published in: Journal for ImmunoTherapy of Cancer Authors: Kensuke Kaneko, Chaitanya R Acharya, Hiroshi Nagata, Xiao Yang, Zachary Conrad Hartman, Amy Hobeika, Philip F Hughes, Timothy A J Haystead, Michael A Morse, Herbert Kim Lyerly, Takuya Osada    Published in: Journal for ImmunoTherapy of Cancer Authors: Kensuke Kaneko, Chaitanya R Acharya, Hiroshi Nagata, Xiao Yang, Zachary Conrad Hartman, Amy Hobeika, Philip F Hughes, Timothy A J Haystead, Michael A Morse, Herbert Kim Lyerly, Takuya Osada   Heat shock protein (HS291) targeted PDT was studied in mice with ML7710 to understand immunological component and combination with immune checkpoint inhibitors. The study demonstrates the potential of combined Hsp90-targeted PDT and PD-1/PD-L1 blockade in breast cancer immunotherapy and abscopal effect i.e. efficacy on distal tumors.   Continue reading →

Development of heat shock protein 90-targeted PDT for inflammatory breast cancer

Motivation of the study In photodynamic therapy (PDT), systemically administered photosensitizer is activated within the tumor using focused near-infrared light, typically a laser with a wavelength matching the absorption peak of the photosensitizer. Several photosensitizers have been clinically approved for the treatment of different cancers; however, their accumulation is non-tumor exclusive which exposes healthy tissues to side effects like daylight-induced phototoxicity. A promising strategy to improve tumor selectivity is to couple photosensitizer to a tumor-targeting agent that binds to a specific antigen expressed on the Continue reading →Customer case Research by: Duke University, founded in 1924, is one of the leading and wealthiest private research universities in the USA. The most notable Duke alumni is President Richard Nixon. Research at Duke University has been awarded with several Nobel prizes in recent years for groundbreaking discoveries in biochemistry and medicine, such as G-protein coupled receptors, DNA mismatch repair, and cellular regulation of hypoxia. Modulight products: ML8500, ML7710 (665 nm, 689 nm, 750 nm) Laser use: Heat shock protein 90-targeted PDT for breast cancer Continue reading →

Theranostic Prospects of Graphene Quantum Dots in Breast Cancer

Published in: ACS Biomaterials Science and Engineering Authors: Rahul S. Tade, Pravin O. Patil  Published in: ACS Biomaterials Science and Engineering Authors: Rahul S. Tade, Pravin O. Patil   Breast cancer (BC) is increasing as a significant cause of mortality among women. In this context, early diagnosis and treatment strategies for BC are being developed by researchers at the cellular level using advanced nanomaterials. However, immaculate etiquette is the prerequisite for their implementation in clinical practice. Considering the stolid nature of cancer, combining diagnosis and therapy (theranostics) using graphene quantum dots (GQDs) is a prime focus and challenge for Continue reading →

Heat shock protein 90-targeted photodynamic therapy enables treatment of subcutaneous and visceral tumors

Published in: Communications Biology Authors: Kensuke Kaneko, Takuya Osada, Michael A. Morse, William R. Gwin, Joshua D. Ginzel, Joshua C. Snyder, Xiao-Yi Yang, Cong-Xiao Liu, Márcio A. Diniz, Khaldon Bodoor, Philip F. Hughes, Timothy AJ. Haystead, H. Kim Lyerly    Published in: Communications Biology Authors: Kensuke Kaneko, Takuya Osada, Michael A. Morse, William R. Gwin, Joshua D. Ginzel, Joshua C. Snyder, Xiao-Yi Yang, Cong-Xiao Liu, Márcio A. Diniz, Khaldon Bodoor, Philip F. Hughes, Timothy AJ. Haystead, H. Kim Lyerly   ML7710 was used for in vivo and ML8500 coupled to ML7710 for in vitro studies of HSP90-targeted verteporfin PDT for breast cancer. This strategy has both diagnostic and therapeutic potential across all breast cancer subtypes found up to few cm in depth, and may provide Continue reading →

Fully automated illumination study series for modern cancer drug development

Fully automated illumination study series for modern cancer drug development In vitro cell viability and dose escalation study for developing photosensitive or photoactivated drugs using Modulight ML7710 medical laser and ML8500 automated illumination system.     Experimental set up        Fully automated illumination study series for modern cancer drug development In vitro cell viability and dose escalation study for developing photosensitive or photoactivated drugs using Modulight ML7710 medical laser and ML8500 automated illumination system.   STUDY PLAN The goal was to investigate the effect of irradiance and light dose on a cancer cell line while keeping the photosensitive drug dosing constant. The well-by-well dose escalation plan was done in tabular format. TARGET Cancer cell line incubated at 37°C in acidic culture DRUG TYPE Photosensitive or Continue reading →